Matplotlib,scipy,pandas,svm,linear regression,multiple linear regression,k-means,

ASSESSMENT-1

1.DICTIONARY
2.TUPLE
3.LIST
4.NUMPY
5.SCIPY
6.PANDAS
7.MATPLOTLIB
8.SKLEARN PREPROCESSING TECHNIQUES
9.ML BASICS(TYPES OF ML)
10.K-MEANS
11.SVM
12.LINEAR REGRESSION
13.MULTIPLE LINEAR REGRESSION
14.IMAGE CONTRAST
15.HISTOGRAM EQUALIZATION

*FILENAME FORMAT:* CAMPUS NAME_REGNO (EX:APCAMPUS_171801120058)
*DEADLINE:* 4-04-20 BEFORE 6:00 PM                                                                                                                           *NOTE:* EVERY INDIVIDUAL HAS TO PREPARE A SINGLE PYTHON JUPYTER NOTEBOOK FILE(.ipynb file) FOR ALL 15 TOPICS. NO TWO STUDENTS CODE SHOULD NOT MATCH IF SO BOTH WILL BE MARKED AS ZERO.
*VIVA* WILL BE CONDUCTED BY *RAMANA SIR/SUNITA MAM/NAGESH SIR.*
ASSESSMENT-2

ML-PROJECT
CHOOSE YOUR OWN PROJECT.

*NOTE:* EVERY INDIVIDUAL HAS TO CHOOSE ONE ML PROJECT, MARKS WILL BE GIVEN ON COMPLEXITY LEVEL OF PROJECT, KNOWLEDGE ON CODE AND VIVA DEFENCE.NO TWO STUDENTS ARE ALLOWED TO TAKE THE SAME PROJECT.
*DEADLINE:* 16-04-20 BEFORE 6:00 PM

You can leave a response, or trackback from your own site.